Should you trust climate science? Maybe the eclipse is a clue

An example of a prediction:

"Looks like we're heading for La Nina going into Winter. That means I expect 2018 will not average much different from 2017, both close to 2015 level. Then a probable new record in 2019."

How does anyone know which way the ENSO behavior is heading if there is not a clear understanding of the underlying mechanism? [1]

For the prediction quoted above, the closer one gets to an peak or valley, the safer it is to make a dead reckoning guess. For example, I can say a low tide is coming if it is coming off a high tide — even if I have no idea what causes tides.

Yet, if we understand the mechanism behind ocean tides — that it is due to the gravitational pull of the sun and the moon  —  we can do a much better job of prediction.

The New York Times climate change reporter Justin Gillis suggests that climate science can make predictions as well as geophysicists can predict eclipses:
https://www.nytimes.com/2017/08/18/climate/should-you-trust-climate-science-maybe-the-eclipse-is-a-clue.html.  And there is this:

Yet, if climate scientists can't figure out the mechanism behind a behavior such as ENSO, everyone is essentially in the same boat, fishing for a basic understanding.

So what happens if we can formulate the messy ENSO behavior into a basic geophysics problem, something on the complexity of tides?  We are nowhere near that according to the current research literature, unless this finding — which has been a frequent topic here — turns out to be true.

In this case, the recent solar eclipse is in fact a clue. The precise orbit of the moon is vital to determining the cycles of ENSO. If this assertion is true, one day we will likely be able to predict when the next El Nino occurs, with the accuracy of predicting the next eclipse.

Footnote:

[1] Consider one common explanation invoking winds. In fact, shifts in the prevailing winds is not a mechanism because any shift or reversal requires a mechanism itself, see for example the QBO.

 

ENSO model for predicting El Nino and La Nina events

Applying the ENSO model to predict El Nino and La Nina events is automatic. There are no adjustable parameters apart from the calibrated tidal forcing amplitudes and phases used in the process of fitting over the training interval. Therefore the cross-validated interval from 1950 to present is untainted during the fitting process and so can be used as a completely independent and unbiased test.

Continue reading

Millennium Prize Problem: Navier-Stokes

Watched the hokey movie Gifted on a plane ride. Turns out that the Millennium Prize for mathematically solving the Navier-Stokes problem plays into the plot.

I am interested in variations of the Navier–Stokes equations that describe hydrodynamical flow on the surface of a sphere.  The premise is that such a formulation can be used to perhaps model ENSO and QBO.

The so-called primitive equations are the starting point, as these create constraints for the volume geometry (i.e. vertical motion much smaller than horizontal motion and fluid layer depth small compared to Earth's radius). From that, we go to Laplace's tidal equations, which are a linearization of the primitive equations.

I give a solution here, which was originally motivated by QBO.

Of course the equations are under-determined, so the only hope I had of solving them is to provide this simplifying assumption:

{\frac{\partial\zeta}{\partial\varphi} = \frac{\partial\zeta}{\partial t}\frac{\partial t}{\partial\varphi}}

If you don't believe that this partial differential coupling of a latitudinal forcing to a tidal response occurs, then don't go further. But if you do, then:

 

 

 

 

Solar Eclipse 2017 : What else?

The reason we can so accurately predict the solar eclipse of 2017 is because we have accurate knowledge of the moon's orbit around the earth and the earth's orbit around the sun.

Likewise, the reason that we could potentially understand the behavior of the El Nino Southern Oscillation (ENSO) is that we have knowledge of these same orbits. As we have shown and will report at this year's American Geophysical Union (AGU) meeting, the cyclic gravitational pull of the moon (lower panel in Figure 1 below) interacting seasonally precisely controls the ENSO cycles (upper panel Figure 1).

Fig 1: Training interval 1880-1950 leads to extrapolated fit post-1950

Figure 2 is how sensitive the fit is to the precise value of the lunar cycle periods. Compare the best ft values to the known lunar values here. This is an example of the science of metrology.

Fig 2: Sensitivity to selection of lunar periods.

The implications of this research are far-ranging. Like knowing when a solar eclipse occurs helps engineers and scientists prepare power utilities and controlled climate experiments for the event, the same considerations apply to ENSO.  Every future El Nino-induced heat-wave or monsoon could conceivably be predicted in advance, giving nations and organizations time to prepare for accompanying droughts, flooding, and temperature extremes.

Follow @whut on Twitter:

ENSO Split Training for Cross-Validation

If we split the modern ENSO data into two training intervals — one from 1880 to 1950 and one from 1950 to 2016, we get roughly equal-length time series for model evaluation.

As Figure 1 shows, a forcing stimulus due to monthly-range LOD variations calibrated to the interval between 2000 to 2003 (lower panel) is used to train the ENSO model in the interval from 1880 to 1950. The extrapolated model fit in RED does a good job in capturing the ENSO data in the period beyond 1950.

Fig. 1: Training 1880 to 1950

Next, we reverse the training and verification fit, using the period from 1950 to 2016 as the training interval and then back extrapolating. Figure 2 shows this works about as well.

Fig. 2: Training interval 1950 to 2016

Continue reading