The Lunar Geophysical Connection

The conjecture out of NASA JPL is that the moon has an impact on the climate greater than is currently understood:

Claire Perigaud (Caltech/JPL)
Has this research gone anywhere?  Looks as if has gone to this spin-off.
According to the current consensus, variability in wind is what contributes to forcing for behaviors such as the El Nino/Southern Oscillation (ENSO).
OK, but what forces the wind? No one can answer that apart from saying wind variability is just a part of the dynamic climate system.  And so we are lead to believe that a wind burst will cause an ENSO and then the ENSO event will create a significant disruptive transient to the climate much larger than the original wind stimulus. And that's all due to positive feedback of some sort.
I am only paraphrasing the current consensus.
A much more plausible and parsimonious explanation lies with external lunar forcing reinforced by seasonal cycles.

Continue reading

Lindzen doth protest too much

Incredible that Richard Lindzen was quoted as saying this:

Richard Lindzen, the Alfred P. Sloan Professor of Meteorology at MIT and a member of the National Academy of Sciences who has long questioned climate change orthodoxy, is skeptical that a sunnier outlook is upon us.

“I actually doubt that,” he said. Even if some of the roughly $2.5 billion in taxpayer dollars currently spent on climate research across 13 different federal agencies now shifts to scientists less invested in the calamitous narrative, Lindzen believes groupthink has so corrupted the field that funding should be sharply curtailed rather than redirected.

“They should probably cut the funding by 80 to 90 percent until the field cleans up,” he said. “Climate science has been set back two generations, and they have destroyed its intellectual foundations.”

Consider the psychological projection aspect of what Lindzen is asserting. The particularly galling part is this:

“Climate science has been set back two generations, and they have destroyed its intellectual foundations.”

It may actually be Lindzen that has set back generations of atmospheric science research with his deeply flawed model of the quasi-biennial oscillation of equatorial stratospheric winds — see my recent QBO presentation for this month's AGU meeting.   He missed a very simple derivation that he easily could have derived back in the 1960’s, and that could have set a nice “intellectual foundation” for the next 40+ years. Instead he has essentially "corrupted the field" of atmospheric sciences that could have been solved with the right application of Laplace's tidal equations — equations known since 1776 !

The "groupthink" that Lindzen set in motion on the causes behind QBO is still present in the current research papers, with many scientists trying to explain the main QBO cycle of 28 months via a relationship to an average pressure. See for example this paper I reviewed earlier this year.

To top it all off, he was probably within an eyelash of figuring out the nature of the forcing, given that he actually considered the real physics momentarily:

Alas, all those millions of taxpayer funds that Lindzen presumably received over the years didn't help, and he has been reduced to whining over what other climate scientists may receive in funding as he enters into retirement.

Methinks it's usually the case that the one that "doth protest too much" is the guilty party.

Added: here is a weird graphic of Lindzen I found on the cliscep blog. The guy missed the simple while focussing on the complex.


From climate scientist Dessler

From climate scientist Dessler


ENSO redux

I've been getting push-back on the ENSO sloshing model that I have devised over the last year.  The push-back revolves mainly about my reluctance to use it for projection, as in immediately.  I know all the pitfalls of forecasting -- the main one being that if you initially make a wrong prediction, even with the usual caveats, you essentially don't get a second chance.   The other problem with forecasting is that it is not timely; in other words, one will have to wait around for years to prove the validity of a model.   Who has time for that ? 🙂

Yet, there are ways around forecasting into the future. One of which primarily involves using prior data as a training interval, and then using other data in the timeline (out-of-band data) as a check.

I will give an example of using training data of SOI from 1880 - 1913 (400 months of data points) to predict the SOI profile up to 1980 (800 months of data points). We know and other researchers [1] have confirmed that ENSO undergoes a transition around 1980, which obviously can't be forecast.   Other than that, this is a very aggressive training set, which relies on ancient historical data that some consider not the highest quality. The results are encouraging to say the least.

Continue reading

An ENSO Predictor Based on a Tide Gauge Data Model

Earlier this year, I decided to see how far I could get in characterizing the El Nino / Southern Oscillation through a simple model, which I referred to as the Southern Oscillation Index Model, or SOIM for short (of course pronounced with a Brooklyn accent). At the time, I was coming off a research project where the task was to come up with simple environmental models, or what are coined as context models, and consequently simple patterns were on my mind.

So early on I began working from the premise that a simple nonlinear effect was responsible for the erratic oscillations of the ENSO. The main candidate, considering that the ENSO index of SOI was clearly an oscillating time-series, was the Mathieu equation formulation. This is well known as a generator of highly erratic yet oscillating waveforms.  Only later did I find out that the Mathieu equation was directly used in modeling sloshing volumes of liquids [1][2]  --  which makes eminent sense as the term "sloshing" is often used to describe the ENSO phenomena as it applies to the equatorial Pacific Ocean (see here for an example).

Over the course of the year I have had intermittent success in modeling ENSO with a Mathieu formulation for sloshing, but was not completely satisfied,  largely due to the overt complexity of the result.

However, in the last week I was motivated to look at a measure that was closer to the concept of sloshing, namely that of sea surface height. The SOI is an atmospheric pressure measure so has a more tenuous connection to the vertical movement of water that is involved in sloshing. Based on the fact that tidal gauge data was available for Sydney harbor (Fort Denison here)  and that this was a long unbroken record spanning the same interval as the SOI records, I did an initial analysis posted here.

The main result was that the tidal gauge data could be mapped to the SOI data through a simple transformation and so could be used as a proxy for the ENSO behavior. The excellent correlation after a delay differential of 24 months is applied  is shown in Figure 1 below.

Fig 1:  The first step is to map a proxy (tide gauge data) to the SOI data

That was the first part of the exercise, as we still need to be able to quantify the tidal sea surface height oscillations in terms of a Mathieu type of model. Only then can we make predictions on future ENSO behavior.

As it turns out the model appears to greatly simplify, as the forcing, F(t), for the right hand side (RHS) of the Mathieu formulation consists of annual, biannual (twice a year), and biennial (once every two years) factors.

 \frac{d^2x(t)}{dt^2}+[a-2q\cos(2\omega t)]x(t)=F(t)

The last biennial factor, though not well known outside of narrow climate science circles [3], is critical to the model's success.

Although the Mathieu differential equation is simple, the solution requires numerical computation. I (along with members of the Azimuth Project) like to use Mathematica as a solver.

The complete solution over a 85-year span is shown in Figure 2 below

Fig 2: The second step is to model the tidal data in terms of a sloshing formulation. The biennial factor shows a phase reversal around 1953, switching from an even to odd year periodicity. The yellow highlighted area is one of the few regions that a correlation is clearly negative. Otherwise the fit models the behavioral details quite effectively.

This required an optimization of essentially three Mathieu factors, the a and q amplitudes, and the ω modulation (along with its phase). These are all fixed and constitute the LHS of the differential equation.  The RHS of the differential equation essentially comprises the amplitudes of the annual, biannual, and biennial sinusoids, along with phase angles to synchronize to the time of the year. And as with any 2nd-order differential equation, the initial conditions for y(t) and y'(t) are provided.

As I began the computation with a training interval starting from 1953 (aligning with the advent of QBO records), I was able to use the years prior to that for a validation.  As it turns out, the year 1953 marked a change in the biennial phase, switching from odd-to-even years (or vice versa depending on how it is defined).  Thus the validation step only required a one-year delay in the biennial forcing (see the If [ ] condition in the equation of Figure 2).

The third step is to project the model formulation into the future. Or further back into the past using ENSO proxies. The Azimuth folks including Dara and company are helping with this, along with two go-to guys at the U of MN who shall remain nameless at the present time, but they know who they are.

Ultimately, since the model fitting of the tide data works as well as it does, with the peaks and values of the sloshing waters effectively identified at the correct dates in the time series, it should be straightforward to transform this to an ENSO index such as SOI and then extrapolate to the future. The only unknown is when the metastable biennial factor will switch odd/even year parity.  There is some indication that this happened shortly after the year 2000, as I stopped the time series at this point.  It is best to apply the initial conditions y and y' at this transition to avoid a discontinuity in slope, and since we already applied the initial conditions at the year 1953, this analysis will have to wait.

The previous entries in this series are best observed by walking backwards from this post, and by visiting the Azimuth Forum.   Science is messy and nonlinear as practiced, but the results are often amazing.  We will see how this turns out.


[1] Faltinsen, Odd Magnus, and Alexander N Timokha. Sloshing. Cambridge University Press, 2009.
[2] Frandsen, Jannette B. “Sloshing Motions in Excited Tanks.” Journal of Computational Physics 196, no. 1 (2004): 53–87.
[3] Kim, Kwang-Yul, James J O’Brien, and Albert I Barcilon. “The Principal Physical Modes of Variability over the Tropical Pacific.” Earth Interactions 7, no. 3 (2003): 1–32.


Keep it Lit

Good luck to the People's Climate Marchers.  I read Bill McKibben's book Long Distance several years ago, and realize that persistence and endurance pays off. I also realize that there are no leaders in the movement, and that we all have to pull together to get off of fossil fuel.  If we each do our share, the outcome will tend more toward the good than to the bad.



What missing heat?

As with the discussion about the "pause" in global surface temperatures, much consternation exists about the so-called "missing heat" in the earth's energy budget.

There are three pieces of the puzzle regarding this issue, which collectively have to fit together for us to be able to make sense about the net energy flow.

  1. The surface temperature time series, see the CSALT model
  2. Heat sinking via ocean heat content diffusion, see the OHC model
  3. The land and ocean surface temperatures have an interaction where they can exchange energy

We have an excellent start on the first two but the last requires a fresh analysis.   Understanding the exchange of energy is crucial to not getting twisted up in knots trying to explain any perceived deficit in heat accounting.

Consider Figure 1 below where the energy fluxes are shown at a level of detail appropriate for book-keeping.  On the left side, we have an energy balance of incoming flux perturbation (Li)  and outgoing flux (Lo) for the land area (we don't consider the existing balance as we assume that is already in a steady state).  On the right side we do the same for the sea or ocean area (Si and So).

The question is how do we proceed if we don't have direct knowledge of all the parameters.  The first guess is that they have to be inferred collectively. The complicating factor is that the sea both absorbs thermal energy (heat) into the bulk shown as the OHC arrow, and that some fraction of the latent and radiative heat emitted by the sea surface transfers over to the land.  There is little doubt that this occurs as the Pacific Ocean-originating El Nino events do impact the land, while regular seasonal monsoons work to redistribute enormous amounts as rain originating from the ocean and delivered to the land as moist latent energy. So the question mark in the figure indicates where we need to estimate this split.

Fig 1: Schematic of energy flow necessary to balance the budget.

Solving this problem would make an excellent homework assignment and perfect for a class in climate science.  Let's give it a try.


Continue reading

Bakken Projections

The Dynamic Context Server features an interactive Bakken Oil model showing the Red Queen effect. The model uses historical oil well count and cumulative production to estimate average well output over time and then project that a number of months into the future.

The North Dakota Mineral Resources Department releases monthly data which we use to fit against. The start of the model is set to when the oil production statistics began and continues to the recent month 378:

Continue reading

The Oil Drum post

When The Oil Drum blog ceases to exist, I will start to add a stream of regular content to the ContextEarth blog. The time frame for The Oil Drum termination is early September, which puts it at next week.

The staff at The Oil Drum were gracious enough to allow me to post a final article on my thoughts and an example of the Oil Shock Model in action. The name of the post is Modeling Bakken Oil Production: The Oil Shock Model Explained.

I used the Dynamic Context Server to generate the Bakken production model

For modeling the Bakken ala the convolution-based shock model, the inputs are two time-series.
1. The forced input is the time series of newly available wells.
2. The response input is the time series of expected decline from a single well.
The convolution function takes the forced input and applies the response input and generates the expected aggregate oil production over time.