Search for El Nino

The model for ENSO includes a nonlinear search feature that finds the best-fit tidal forcing parameters.  This is similar to what a conventional ocean tidal analysis program performs — finding the best-fitting lunar tidal parameters based on a measured historic interval of hundreds of cycles. Since tidal cycles are abundant — occurring at least once per day — it doesn't take much data collected over a course of time to do an analysis.  In contrast, the ENSO model cycles over the course of years, so we have to use as much data as we can, yet still allow test intervals.

What follows is the recipe (more involved than the short recipe) that will guarantee a deterministic best-fit from a clean slate each time. Very little initial condition information is needed to start with, so that the final result can be confidently recovered each time, independent of training interval.

Continue reading

Variation in the Length of the Anomalistic Month

For the ENSO model, we use two constraints for the fitting process. One of the constraints is to maximize the correlation coefficient for the model over the ENSO training interval selected. The other constraint is to maximize the correlation of the selected lunar tidal forces over a measured Length-of-Day (LOD) interval. The latter constrains the lunar tidal forcing to known values that will actually change the angular momentum of the earth's rotation. This in turn drives the sloshing of the Pacific ocean's thermocline leading to the ENSO cycle. The two constraints are simultaneously met by heuristically maximizing the average of the correlation coefficients.

In addition, there are the fixed constraints of the primary lunar periods corresponding to the Draconic/nodal cycle and the Anomalistic cycle.

This combination gives a fairly effective fit over the entire training cycle, but there is an important additional constraint that needs to be applied to the Anomalistic cycle. The NASA eclispse and moon's orbit page describes the situation :

"The anomalistic month is defined as the revolution of the Moon around its elliptical orbit as measured from perigee to perigee. The length of this period can vary by several days from its mean value of 27.55455 days (27d 13h 18m 33s). Figure 4-4 plots the difference of the anomalistic month from the mean value for the 3-year interval 2008 through 2010. ... the eccentricity reaches a maximum when the major axis of the lunar orbit is pointed directly towards or directly away from the Sun (angles of 0° and 180°, respectively). This occurs at a mean interval of 205.9 days, which is somewhat longer than half a year because of the eastward shift of the major axis. "

This is a significant variation in the anomalistic cycle over the course of a year. We don't use this variation as a constraint but we can use it as a fitting parameter and then compare the variation obtained over that shown above.

Using the 205.9 day value ~365/(2-2/8.85), we break this into Fourier components of half this value and twice this value. The mean Anomalistic period of 27.5545 days is then frequency modulated by the slower periods by the standard engineering procedure. We then allow the amplitude and phase of each factor to vary during the training to obtain the best fit (this is slightly different than the concise form used previously).

If we zoom in on the anomalistic period variation, we get this match to the NASA Goddard model:

There is no reason to believe that this match would spontaneously occur given that there are 3 amplitudes and 3 phase factors involved. Yet it matches precisely to the (1) peak positions, (2) relative amplitudes, and to the (3) cusped shape via the Fourier series summation. An even better fit is obtained if we use abs(sin(π time/205.9+Φ)) as the fitting function as it naturally creates more of a cusp shape due to the full-wave rectification of the sine wave.

Conventional tidal analysis is renowned for being an exacting procedure [1], where the known tidal periods are broken down into equivalently similar sets of harmonic factors, yet applied on a diurnal or semidurnal basis. The only difference here is that ENSO responds to the monthly and fortnightly long-period tides and not the short-period ones.


→ This model fit gives further validation to the lunar tidal mechanism for forcing ENSO.  The exacting process of generating the correct lunar tidal variations (along with the subtle biennial modulation and the tricky aliasing) have likely contributed to the fact that the pattern has remained hidden for so long.  This is actually not so different a situation as the long hidden connection between triggering of earthquakes and the dynamic  moon-sun-earth alignment. That pattern is also hidden, only exposed recently. Alas, not everything can be quite as obvious as the pattern matching of ocean surface tides to the lunisolar cycles.

References

[1] S. Consoli, D. R. Recupero, and V. Zavarella, “A survey on tidal analysis and forecasting methods for Tsunami detection,” arXiv preprint arXiv:1403.0135, 2014.

UPDATE

The reason for the peculiar shape of the Anomalistic frequency variations is due to a different slope (i.e. velocity) on one lobe of the elliptical orbit than on the other. You can get this by generating another sinusoidal modulation on top of the average elliptical sinusoid. This generates an asymmetric sawtooth in the phase angle (see blue line below) and the characteristic spiked or cusped profile in the effective frequency or derivative of this value (see red line below).
I am starting to use this formulation in the ENSO model as it is quite concise.

The Hawkmoth Effect

Contrasting to the well-known Butterfly Effect, there is another scientific modeling limitation known as the Hawkmoth Effect.  Instead of simulation results being sensitive to initial conditions, which is the Butterfly Effect, the Hawkmoth Effect is sensitive to model structure.  It's a more subtle argument for explaining why climate behavioral modeling is difficult to get right, and named after the hawkmoth because hawkmoths are "better camouflaged and less photogenic than butterflies".

Not everyone agrees that this is a real effect, or it just reveals shortcomings in correctly being able to model the behavior under study. So, if you have the wrong model or wrong parameters for the model, of course it may diverge from the data rather sharply.

In the context of the ENSO model, we already provided parameters for two orthogonal intervals of the data.  Since there is some noise in the ENSO data — perfectly illustrated by the fact that SOI and NINO34 only have a correlation coefficient of 0.79 — it is difficult to determine how much of the parameter differences are due to over-fitting of that noise.

In the figure below, the middle panel shows the difference between the SOI and NINO34 data, with yellow showing where the main discrepancies or uncertainties in the true ENSO value lie. Above and below are the model fits for the earlier (1880-1950 shaded in a yellow background) and later (1950-2016) training intervals. In certain cases, a poorer model fit may be able to be ascribed to uncertainty in the ENSO measurement, such as near ~1909., ~1932, and ~1948, where the dotted red lines align with trained and/or tested model regions. The question mark at 1985 is a curiosity, as the SOI remains neutral, while the model fits to more La Nina conditions of NINO34.

There is certainly nothing related to the Butterfly Effect in any of this, since the ENSO model is not forced by initial conditions, but by the guiding influence of the lunisolar cycles. So we are left to determine how much of the slight divergence we see is due to non-stationary variation of the model parameters over time, or whether it is due to missing some other vital structural model parameters. In other words, the Hawkmoth Effect is our only concern.

In the model shown below, we employ significant over-fitting of the model parameters. The ENSO model only has two forcing parameters — the Draconic (D) and Anomalistic (A) lunar periods, but like in conventional ocean tidal analysis, to make accurate predictions many more of the nonlinear harmonics need to be considered [see Footnote 1]. So we start with A and D, and then create all combinations up to order 5, resulting in the set [ A, D, AD, A2, D2, A2D, AD2, A3, D3, A2D2, A3D, AD3, A4, D4, A2D3, A3D2, A4D1, A1D4, A5, D5 ].

This looks like it has the potential for all the negative consequence of massive over-fitting, such as fast divergence in amplitude outside the training interval, yet the results don't show this at all.  Harmonics in general will not cause a divergence, because they remain in phase with the fundamental frequencies both inside and outside the training interval. Besides that, the higher order harmonics start having a diminished impact, so this set is apparently about right to create an excellent correlation outside the training interval.  The two other important constraints in the fit, are (1) the characteristic frequency modulation of the anomalistic period due to the synodic period (shown in the middle left inset) and (2) the calibrated lunar forcing based on LOD measurements (shown in the lower panel).

The resulting correlation of model to data is 0.75 inside the training interval (1880-1980) and 0.69 in the test interval (1980-2016).  So this gets close to the best agreement we can expect given that SOI and NINO34 only reaches 0.79.  Read this post for the structural model parameter variations for a reduced harmonic set to order 3 only.

Welcome to the stage of ENSO analysis where getting the rest of the details correct will provide only marginal benefits;  yet these are still important, since as with tidal analysis and eclipse models, the details are important for fine-tuning predictions.

Footnote:

  1. For conventional tidal analysis, hundreds of resulting terms are the norm, so that commercial tidal prediction programs allow an unlimited number of components.

 

 

 

Switching between two models

Recipe for ENSO model in one tweet


and for QBO

The common feature of the two is the application of Laplace's tidal equation and its closed-form solution.

Should you trust climate science? Maybe the eclipse is a clue

An example of a prediction:

"Looks like we're heading for La Nina going into Winter. That means I expect 2018 will not average much different from 2017, both close to 2015 level. Then a probable new record in 2019."

How does anyone know which way the ENSO behavior is heading if there is not a clear understanding of the underlying mechanism? [1]

For the prediction quoted above, the closer one gets to an peak or valley, the safer it is to make a dead reckoning guess. For example, I can say a low tide is coming if it is coming off a high tide — even if I have no idea what causes tides.

Yet, if we understand the mechanism behind ocean tides — that it is due to the gravitational pull of the sun and the moon  —  we can do a much better job of prediction.

The New York Times climate change reporter Justin Gillis suggests that climate science can make predictions as well as geophysicists can predict eclipses:
https://www.nytimes.com/2017/08/18/climate/should-you-trust-climate-science-maybe-the-eclipse-is-a-clue.html.  And there is this:

Yet, if climate scientists can't figure out the mechanism behind a behavior such as ENSO, everyone is essentially in the same boat, fishing for a basic understanding.

So what happens if we can formulate the messy ENSO behavior into a basic geophysics problem, something on the complexity of tides?  We are nowhere near that according to the current research literature, unless this finding — which has been a frequent topic here — turns out to be true.

In this case, the recent solar eclipse is in fact a clue. The precise orbit of the moon is vital to determining the cycles of ENSO. If this assertion is true, one day we will likely be able to predict when the next El Nino occurs, with the accuracy of predicting the next eclipse.

Footnote:

[1] Consider one common explanation invoking winds. In fact, shifts in the prevailing winds is not a mechanism because any shift or reversal requires a mechanism itself, see for example the QBO.

 

ENSO model for predicting El Nino and La Nina events

Applying the ENSO model to predict El Nino and La Nina events is automatic. There are no adjustable parameters apart from the calibrated tidal forcing amplitudes and phases used in the process of fitting over the training interval. Therefore the cross-validated interval from 1950 to present is untainted during the fitting process and so can be used as a completely independent and unbiased test.

Continue reading

Millennium Prize Problem: Navier-Stokes

Watched the hokey movie Gifted on a plane ride. Turns out that the Millennium Prize for mathematically solving the Navier-Stokes problem plays into the plot.

I am interested in variations of the Navier–Stokes equations that describe hydrodynamical flow on the surface of a sphere.  The premise is that such a formulation can be used to perhaps model ENSO and QBO.

The so-called primitive equations are the starting point, as these create constraints for the volume geometry (i.e. vertical motion much smaller than horizontal motion and fluid layer depth small compared to Earth's radius). From that, we go to Laplace's tidal equations, which are a linearization of the primitive equations.

I give a solution here, which was originally motivated by QBO.

Of course the equations are under-determined, so the only hope I had of solving them is to provide this simplifying assumption:

{\frac{\partial\zeta}{\partial\varphi} = \frac{\partial\zeta}{\partial t}\frac{\partial t}{\partial\varphi}}


If you don't believe that this partial differential coupling of a latitudinal forcing to a tidal response occurs, then don't go further. But if you do, then:

 

 

 

 

Solar Eclipse 2017 : What else?

The reason we can so accurately predict the solar eclipse of 2017 is because we have accurate knowledge of the moon's orbit around the earth and the earth's orbit around the sun.

Likewise, the reason that we could potentially understand the behavior of the El Nino Southern Oscillation (ENSO) is that we have knowledge of these same orbits. As we have shown and will report at this year's American Geophysical Union (AGU) meeting, the cyclic gravitational pull of the moon (lower panel in Figure 1 below) interacting seasonally precisely controls the ENSO cycles (upper panel Figure 1).

Fig 1: Training interval 1880-1950 leads to extrapolated fit post-1950

Figure 2 is how sensitive the fit is to the precise value of the lunar cycle periods. Compare the best ft values to the known lunar values here. This is an example of the science of metrology.

Fig 2: Sensitivity to selection of lunar periods.

The implications of this research are far-ranging. Like knowing when a solar eclipse occurs helps engineers and scientists prepare power utilities and controlled climate experiments for the event, the same considerations apply to ENSO.  Every future El Nino-induced heat-wave or monsoon could conceivably be predicted in advance, giving nations and organizations time to prepare for accompanying droughts, flooding, and temperature extremes.

Follow @whut on Twitter:

ENSO Split Training for Cross-Validation

If we split the modern ENSO data into two training intervals — one from 1880 to 1950 and one from 1950 to 2016, we get roughly equal-length time series for model evaluation.

As Figure 1 shows, a forcing stimulus due to monthly-range LOD variations calibrated to the interval between 2000 to 2003 (lower panel) is used to train the ENSO model in the interval from 1880 to 1950. The extrapolated model fit in RED does a good job in capturing the ENSO data in the period beyond 1950.

Fig. 1: Training 1880 to 1950

Next, we reverse the training and verification fit, using the period from 1950 to 2016 as the training interval and then back extrapolating. Figure 2 shows this works about as well.

Fig. 2: Training interval 1950 to 2016

Continue reading

Deterministic and Stochastic Applied Physics

Pierre-Simon Laplace was one of the first mathematicians who took an interest in problems of probability and determinism.  It's surprising how much of the math and applied physics that Laplace developed gets used in day-to-day analysis. For example, while working on the ENSO and QBO analysis, I have invoked the following topics at some point:

  1. Laplace's tidal equations
  2. Laplace's equation
  3. Laplacian differential operator
  4. Laplace transform
  5. Difference equation
  6. Planetary and lunar orbital perturbations
  7. Probability methods and problems
    1. Inductive probability
    2. Bayesian analysis, e.g. the Sunrise problem
  8. Statistical methods and applications
    1. Central limit theorem
    2. Least squares
  9. Filling in holes of Newton's differential calculus
  10. Others here

Apparently he did so much and was so comprehensive that in some of his longer treatises he often didn't cite the work of others, making it difficult to pin down everything he was responsible for (evidently he did have character flaws).

In any case, I recall applying each of the above in working out some aspect of a problem. Missing was that Laplace didn't invent Fourier analysis but the Laplace transform is close in approach and utility.

When Laplace did all this research, he must have possessed insight into what constituted deterministic processes:

We may regard the present state of the universe as the effect of its past and the cause of its future. An intellect which at a certain moment would know all forces that set nature in motion, and all positions of all items of which nature is composed, if this intellect were also vast enough to submit these data to analysis, it would embrace in a single formula the movements of the greatest bodies of the universe and those of the tiniest atom; for such an intellect nothing would be uncertain and the future just like the past would be present before its eyes.

— Pierre Simon Laplace,
A Philosophical Essay on Probabilities[wikipedia]
This is summed up as:

He also seemed to be a very applied mathematician, as per a quote I have used before  “Probability theory is nothing but common sense reduced to calculation.”  Really nothing the least bit esoteric about any of Laplace's math, as it seemed always motivated by solving some physics problem or scientific observation. It appears that he wanted to explain all these astronomic and tidal problems in as simple a form as possible. Back then it may have been esoteric, but not today as his techniques have become part of the essential engineering toolbox. I have to wonder if Laplace were alive now whether he would agree that geophysical processes such as ENSO and QBO were equally as deterministic as the sun rising every morning or of the steady cyclic nature of the planetary and lunar orbits. And it wasn't as if Laplace possessed confirmation bias that behaviors were immediately deterministic; as otherwise he wouldn't have spent so much effort in devising the rules of probability and statistics that are still in use today, such as the central limit theorem and least squares.

Perhaps he would have glanced at the ENSO problem for a few moments, noticed that in no way that it was random, and then casually remarked with one his frequent idiomatic phrases:

"Il est aisé à voir que..."  ... or ..  ("It is easy to see that...").

It may have been so obvious that it wasn't important to give the details at the moment, only to fill in the chain of reasoning later.  Much like the contextEarth model for QBO, deriving from Laplace's tidal equations.

Where are the Laplace's of today that are willing to push the basic math and physics of climate variability as far as it will take them? It has seemingly jumped from Laplace to Lorenz and then to chaotic uncertainty ala Tsonis or mystifying complexity ala Lindzen. Probably can do much better than to punt like that ... on first down even !