Sloshing Model for ENSO
Revised 5/25/2016 09:21:00

P.R. Pukite
e-mail address: puk@umn.edu

The El Nino southern oscillation (ENSO) behavior can be effectively modeled as a response to a 2nd-order Mathieu/Hill differential equation with periodic coefficients describing sloshing of a volume of water. The forcing of the equation derives from tidal-forcings as in QBO, angular momentum changes synchronized with the Chandler wobble, and a metastable biennial modulation. One regime change was identified in 1981.

Keywords: ENSO, El Nino

PACS: 92.05.Df, 92.10.am, 92.70.-j

I. INTRODUCTION

A general sloshing formulation is modeled as the following 2nd-order differential wave equation [3][5][6]

\[f''''(t) + (\omega^2 + q(t))f(t) = F(t) \tag{1} \]

where \(f(t) \) is the level height and \(F(t) \) is a forcing. For ENSO, the characteristic frequency is given by \(\omega \), which has been evaluated as 2π/4.25 rads/yr, based on dynamic thermocline behavior [1]. The factor \(q(t) \) is a non-linear Mathieu or Hill-type modulation that arises as a natural consequence of a constrained volume of largely inviscid liquid [3], and can be further induced by a vertical forcing [6]. Although the physics of the sloshing behavior is ultimately complex, the more elaborate finite-element simulations remain close to the result of equation (1) if \(q(t) \) and \(F(t) \) are periodic functions [6].

The results of this study reveal that if \(F(t) \) corresponds to a mixed forcing of the QBO long-period tidal factors, Chandler wobble, and a biennial modulation \(s \), combined with a characteristic period of 4.25 years, a surprisingly good fit to the Southern Oscillation Index (SOI) time-series of ENSO is obtained. The SOI time series was chosen because it is well characterized [30] and functions close to the oscillating standing-wave dipole [12] that is characteristic of a sloshing behavior. It also has a long-running record dating back 130+ years collected from the Tahiti (+ pole) and Darwin (- pole) sites.

Although the SOI is a measure of atmospheric pressure, via the reverse barometric effect one can tie in ocean-level variations as a result of spatio-temporal sloshing to changes in pressure. This becomes the SOI Model (SOIM).

II. QUASI-BIENNAL OSCILLATION

The quasi-biennial oscillation (QBO) of stratospheric winds has long been associated with ENSO [7][8][14][27], and has been thought to produce a forced stimulation to the ocean’s surface by a down-welling wind shear. The QBO cycles by exhibiting two longitudinal direction reversals every 28 months on average. Measurements for QBO at different altitudes (expressed as an equivalent atmospheric pressure) are available since 1953 [36]. The goal with fitting QBO was to find potential common forcing mechanisms.

Lindzen [23] first suggested that “Lunar tides are especially well suited to such studies since it is unlikely that lunar periods could be produced by anything other than the lunar tidal potential.” Initially, this study applied a machine learning tool to isolate the primary QBO frequencies. Table 1 shows that it discovered two frequencies corresponding to seasonally aliased lunar month periods (vs non-aliased [14]).

Table 1: Draconic (1st row) and Tropical (2nd row) aliasing

<table>
<thead>
<tr>
<th>aliased frequency</th>
<th>period (days)</th>
<th>unaliased</th>
<th>closest lunar period (days)</th>
<th>% error</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.663410</td>
<td>2.359075</td>
<td>27.20835</td>
<td>27.21222</td>
<td>-0.01424</td>
</tr>
<tr>
<td>2.297534</td>
<td>2.734752</td>
<td>27.32689</td>
<td>27.32158</td>
<td>0.019416</td>
</tr>
</tbody>
</table>

The wave model targeted the 30 hPa altitude measure of QBO as this showed the strongest signal-to-noise ratio. To confirm, we fit QBO using the seasonally aliased values of the draconic, anomalistic, and tropical long-period tides and extracted the 2nd-derivative to isolate faster aliased periods.

\[f''''(t) \sim F(t) \tag{2} \]

FIG. 1 shows a multiple regression fit with a training interval from 1953 to 1986 and a validation interval from 1986 to 2015. Yellow indicates the rare poorly fit regions.
The sensitivity of the fitting factors to the lunar long periods is shown in Fig. 2 amidst the noisy 2nd-derivative.

![FIG. 2: Correlation sensitivity of lunar tidal periods](image)

The relative strength of factors is shown in Fig. 3. In keeping with a wave equation model, the 2nd-derivative factors scale by ω^2. In addition to the 30 hPa QBO series, the other altitude variants gave equally good fits, with the higher altitudes showing a greater semi-annual content.

![FIG. 3: The strength of the aliased tidal period for modeled QBO and 2nd-derivative of QBO](image)

III. CHANDLER WOBBLE (CW)

The geophysical mechanisms associated with the Chandler wobble in the Earth’s rotation were first identified by Gross [9]. He proposed that fluctuating pressure in the ocean, caused by temperature and salinity changes and wind-driven perturbations in the ocean’s circulation was a principle cause of the wobble. As this is considered a component of the conserved angular momentum of the earth’s lithosphere, a Chandler wobble factor is included in the SOI model along with the same lunar-forcings found in the QBO. Because of the larger moment of inertia in the ocean, it is reasoned that additional angular momentum changes than that produced directly by cyclic lunar forcing would apply to ENSO. Of course, this would explain the greater cyclic variation in the ENSO time-series profile.

The measure of the Chandler wobble that would apply in this case is derived from measurements of the polar x and y coordinate velocity [31]

$$\dot{r} = \sqrt{x^2 + y^2}$$

The JPL POLE99 Kalman Earth Orientation Series filtered data set was used to model this quasi-periodic oscillation [34]. An average value of 6.46 years for the velocity period was estimated [21] while some findings suggest that the Chandler wobble is a split between closely separated spectral peaks [10]. The period of 6.46 years correlates with the beat frequency of the Chandler wobble period of between 432 and 433 days and the annual cycle (see FIG. 4).

![FIG. 4: Chandler wobble model (y axis = arb. units for \dot{r})](image)

IV. TOTAL SOLAR IRRADIANCE (TSI)

Solar variations have been associated with ENSO [29] via its role in modulating the heating/cooling of the water volume. ENSO is considered a cyclic recharge/discharge pattern, so one could intuit that excess solar flux can reinforce a resonance condition if modulated at an appropriate rate. Direct correlations between the Schwabe/Hale cycles of solar flux variations and the ENSO pattern have yet to be found [11], but it may impact the QBO [18]. Although we can’t rule out TSI modulation as a factor, introducing a ~11-yr period does not improve the fit.

V. MATHIEU MODULATION

A biennial modulation is found to apply to the $q(t)$ term in equation (1) of the sloshing wave equation. According to Frandsen [6], any vertical forcing to the RHS of the sloshing differential equation gives rise to a Mathieu-type modulation
of the same frequency. We have found that a biennial or 2-
year modulation agrees with that found by Dunkerton [4] and
Remsberg [26] in stratospheric measurements and by Pan
[24] in sensitive GPS of the earth’s deformation. A strict
biennial mode is also observed in ENSO measurements [13].

VI. CLIMATE REGIME SHIFT

Any analysis of ENSO must consider the significant phase
shift that started in 1976/1977 and lasted until the 1980’s
[20][30]. Marcus et al [17] analyzed angular momentum
changes in the Earth’s rotation and found a significant
perturbation that they associated with the 1976/1977 shift.
Astudillo et al [1] applied Takens embedding theorem
(which works for linear and non-linear systems such as the
Mathieu and Hill formulation) to the ENSO time series,
reconstructing current and future behavior from past
behavior and also found a strong discontinuity around 1981.

In fits to the sloshing model, the perturbation started
at 1981 and lasted for 16 years. In terms of a biennial mode and
metastable conditions there is no distinction between even or
odd-year parity, so by inverting the phase of the biennial
signal during that interval, a good fit was achieved.

VII. COMPOSITION RESULTS

The factors described above were composited according to
equation (1), and finalized as equation (2) below and
evaluated via a differential equation solver, using SOI data
collected since 1880 [35] (both Mathematica and R DiffEq
solvers were used, with similar outcomes). The original
forcing factor, \(F(t) \), on the right-hand side (RHS) was
formulated as a biennial factor multiplied by a mixed factor,
\(g(t) \), containing the lunar-tidal and Chandler wobble forcing.

\[
f'' + (\omega^2 + a \cos(\pi t + \phi))f = \cos(\pi t) \ g \ (2)
\]

Initially, a differential evolution search was attempted to
optimize coefficients and phase terms, but a straightforward
manual adjustment proved quicker. The \(f(t) \) term was
compared to a combination of SOI and a fraction of the
NINO3.4 time series to reduce noise. The correlation
coefficient reached 0.8, which is likely close to a ceiling due
to the noise differential among the Tahiti and Darwin [30].
The scaling was adjusted by equalizing the model and data
variance. More noise was evident in the early years, where
the model tracked Darwin data better than the spotty Tahiti.

An alternative wave-equation transformation approach to
complement a direct differential equation solver was applied
to the results. This approach applied the second-derivative to
the LHS (left-hand-side) of equation (2) and compares
directly to the RHS forcing. So what we see in FIG. 6 is a
biennial modulated forcing view of ENSO. In FIG. 5 the
excursions are compared after 1940. The term \(g(t) \) contains
the Chandler wobble period of 6.48 years, a 14-year QBO-
related term [26] and possibly triaxial wobble contribution
[33], an 18.6 year draconic term, and a weaker anomalous
4.065 year term, split into two aliased sidebands by the
biennial modulation. The key to the excellent fit is applying
a biennial phase inversion between the years 1981-1996,
which effectively flips the even/odd year parity temporarily.
VIII. DISCUSSION AND CONCLUSIONS

As a supplementary evaluation, the *Eureqa* symbolic regression machine learning tool was used to substantiate the selection of the forcing factors. The LHS of equation (3) was input to the *Eureqa* solver, where \(D(soi,t,2) \) is the second derivative of the SOI time series.

\[
D(soi, t, 2) + \omega^2 soi = F(t)
\] (3)

Not surprisingly, the solver identified factors such as QBO and Chandler wobble in the \(F(t) \) expansion.

The model of ENSO as a forced response to a wave equation works remarkably well to reproduce historical data. It is well known that a periodic forcing can reduce the erratic fluctuations and uncertainty of a near-chaotic response function [22][32]. What is not widely known is that a periodic forcing can also promote a biennial modulation “its phase is strongly locked to the calendar months. Thus, the assumption of the 2-year periodicity seems reasonable” [13]. The relative impact of El Nino events tends to be associated with the biennial periodicity. This model also treats the southern oscillation in its entirety, with the multyear period forcing factors important in reproducing the detailed behavioral profile of the SOI time series.

Apart from the difficulty of predicting significant regime changes that can violate the stationarity requirement of the model, both hindcasting for evaluating paleoclimate ENSO data [19] and forecasting may have potential applications for this model. The model is simple enough in its formulation that others can readily improve in its fidelity without resorting to the complexity of a full blown global circulation model (GCM), and in contrast to those depending on erratic [28] or stochastic inputs which have less predictive power. Fits to a red noise model over a short training interval as shown in Fig.6 will quickly diverge over the entire range since the coherence of the long term periodic forcing factors do not apply. So ENSO has a real potential for producing deterministic predictions years in advance.

[34] ftp://euler.jpl.nasa.gov/keof/combinations/2012/pole2012.pm

[37] http://lasp.colorado.edu/data/sorce/soi_data/TSI_TIM_Reconstruction.txt